首页> 外文OA文献 >DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling
【2h】

DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling

机译:Deepsketch2Face:基于深度学习的3D人脸和草图素描系统   漫画建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Face modeling has been paid much attention in the field of visual computing.There exist many scenarios, including cartoon characters, avatars for socialmedia, 3D face caricatures as well as face-related art and design, wherelow-cost interactive face modeling is a popular approach especially amongamateur users. In this paper, we propose a deep learning based sketching systemfor 3D face and caricature modeling. This system has a labor-efficientsketching interface, that allows the user to draw freehand imprecise yetexpressive 2D lines representing the contours of facial features. A novel CNNbased deep regression network is designed for inferring 3D face models from 2Dsketches. Our network fuses both CNN and shape based features of the inputsketch, and has two independent branches of fully connected layers generatingindependent subsets of coefficients for a bilinear face representation. Oursystem also supports gesture based interactions for users to further manipulateinitial face models. Both user studies and numerical results indicate that oursketching system can help users create face models quickly and effectively. Asignificantly expanded face database with diverse identities, expressions andlevels of exaggeration is constructed to promote further research andevaluation of face modeling techniques.
机译:脸部建模在视觉计算领域一直备受关注,存在许多场景,包括卡通人物,社交媒体的化身,3D脸部漫画以及与脸部相关的艺术和设计,其中低成本的交互式脸部建模是一种流行的方法特别是业余用户。在本文中,我们提出了一种基于深度学习的3D人脸和漫画建模草图系统。该系统具有省力的素描界面,允许用户绘制徒手的不精确但富有表情的2D线,这些线代表了面部特征的轮廓。一种新颖的基于CNN的深度回归网络被设计用于从2Dsketches推断3D人脸模型。我们的网络融合了CNN和基于输入草图的基于形状的特征,并具有两个完全相连的层的独立分支,生成了双线性人脸表示的系数的独立子集。我们的系统还支持基于手势的交互,以便用户进一步操纵初始面部模型。用户研究和数值结果均表明,我们的素描系统可以帮助用户快速有效地创建面部模型。构建了具有广泛身份,表情和夸张程度的,可扩展的人脸数据库,以促进人脸建模技术的进一步研究和评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号